Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Methods Mol Biol ; 2574: 309-366, 2022.
Article in English | MEDLINE | ID: covidwho-2059679

ABSTRACT

Paired- and single-chain T cell receptor (TCR) sequencing are now commonly used techniques for interrogating adaptive immune responses. TCRs targeting the same epitope frequently share motifs consisting of critical contact residues. Here we illustrate the key features of tcrdist3, a new Python package for distance-based TCR analysis through a series of three interactive examples. In the first example, we illustrate how tcrdist3 can integrate sequence similarity networks, gene-usage plots, and background-adjusted CDR3 logos to identify TCR sequence features conferring antigen specificity among sets of peptide-MHC-multimer sorted receptors. In the second example, we show how the TCRjoin feature in tcrdist3 can be used to flexibly query receptor sequences of interest against bulk repertoires or libraries of previously annotated TCRs based on matching of similar sequences. In the third example, we show how the TCRdist metric can be leveraged to identify candidate polyclonal receptors under antigenic selection in bulk repertoires based on sequence neighbor enrichment testing, a statistical approach similar to TCRNET and ALICE algorithms, but with added flexibility in how the neighborhood can be defined.


Subject(s)
Antigens , Receptors, Antigen, T-Cell , Algorithms , Epitopes
2.
Eur Respir Rev ; 31(164)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1892170

ABSTRACT

Tuberculosis (TB) remains a leading infectious cause of death worldwide and the coronavirus disease 2019 pandemic has negatively impacted the global TB burden of disease indicators. If the targets of TB mortality and incidence reduction set by the international community are to be met, new more effective adult and adolescent TB vaccines are urgently needed. There are several new vaccine candidates at different stages of clinical development. Given the limited funding for vaccine development, it is crucial that trial designs are as efficient as possible. Prevention of infection (POI) approaches offer an attractive opportunity to accelerate new candidate vaccines to advance into large and expensive prevention of disease (POD) efficacy trials. However, POI approaches are limited by imperfect current tools to measure Mycobacterium tuberculosis infection end-points. POD trials need to carefully consider the type and number of microbiological tests that define TB disease and, if efficacy against subclinical (asymptomatic) TB disease is to be tested, POD trials need to explore how best to define and measure this form of TB. Prevention of recurrence trials are an alternative approach to generate proof of concept for efficacy, but optimal timing of vaccination relative to treatment must still be explored. Novel and efficient approaches to efficacy trial design, in addition to an increasing number of candidates entering phase 2-3 trials, would accelerate the long-standing quest for a new TB vaccine.


Subject(s)
Clinical Trials as Topic , Tuberculosis Vaccines , Vaccine Development , Adolescent , Adult , COVID-19/prevention & control , Clinical Trials as Topic/methods , Humans , Mycobacterium tuberculosis , Research Design , Tuberculosis/prevention & control
3.
Vaccine ; 40(2): 306-315, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1569121

ABSTRACT

Correlates of protection for COVID-19 vaccines are urgently needed to license additional vaccines. We measured immune responses to four COVID-19 vaccines of proven efficacy using a single serological platform. IgG anti-Spike antibodies were highly correlated with ID50 neutralization in a validated pseudoviral assay and correlated significantly with efficacies for protection against infection with wild-type, alpha and delta variant SARS-CoV-2 virus. The protective threshold for each vaccine was calculated for IgG anti-Spike antibody. The mean protective threshold for all vaccine studies for WT virus was 154 BAU/ml (95 %CI 42-559), and for studies with antibody distributions that enabled precise estimation of thresholds (i.e. leaving out 2-dose mRNA regimens) was 60 BAU/ml (95 %CI 35-102). We propose that the proportion of individuals with responses above the appropriate protective threshold together with the geometric mean concentration can be used in comparative non-inferiority studies with licensed vaccines to ensure that new vaccines will be efficacious.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Spike Glycoprotein, Coronavirus
4.
Elife ; 102021 11 30.
Article in English | MEDLINE | ID: covidwho-1542951

ABSTRACT

T-cell receptors (TCRs) encode clinically valuable information that reflects prior antigen exposure and potential future response. However, despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical biomarkers. We propose a new framework that leverages experimentally inferred antigen-associated TCRs to form meta-clonotypes - groups of biochemically similar TCRs - that can be used to robustly quantify functionally similar TCRs in bulk repertoires across individuals. We apply the framework to TCR data from COVID-19 patients, generating 1831 public TCR meta-clonotypes from the SARS-CoV-2 antigen-associated TCRs that have strong evidence of restriction to patients with a specific human leukocyte antigen (HLA) genotype. Applied to independent cohorts, meta-clonotypes targeting these specific epitopes were more frequently detected in bulk repertoires compared to exact amino acid matches, and 59.7% (1093/1831) were more abundant among COVID-19 patients that expressed the putative restricting HLA allele (false discovery rate [FDR]<0.01), demonstrating the potential utility of meta-clonotypes as antigen-specific features for biomarker development. To enable further applications, we developed an open-source software package, tcrdist3, that implements this framework and facilitates flexible workflows for distance-based TCR repertoire analysis.


Subject(s)
Antigens, Viral/genetics , COVID-19/immunology , HLA Antigens/genetics , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2/immunology , Antigens, Viral/immunology , Biomarkers , COVID-19/genetics , Complementarity Determining Regions/immunology , Computational Biology/methods , Epitopes/genetics , Epitopes/immunology , Genotype , HLA Antigens/immunology , Humans , Receptors, Antigen, T-Cell/immunology
5.
J Clin Microbiol ; 59(10): e0052721, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1430152

ABSTRACT

Determinants of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using 40 plasma samples from convalescent individuals with mild to moderate coronavirus disease 2019 (COVID-19): four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate enzyme-linked immunosorbent assay (ELISA)-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor human angiotensin converting enzyme 2 (hACE2). Vero cells, Vero E6 cells, HEK293T cells expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81 to 0.89) and ranged within 3.4-fold. The live virus assay and LV pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers, 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike protein and RBD (r = 0.63 to 0.89), but moderately correlated with nucleoprotein IgG (r = 0.46 to 0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV pseudovirus assay and LV pseudovirus assay with HEK293T/hACE2 cells in low- and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Chlorocebus aethiops , HEK293 Cells , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
6.
Vaccine ; 39(32): 4423-4428, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1240645

ABSTRACT

A correlate of protection (CoP) is urgently needed to expedite development of additional COVID-19 vaccines to meet unprecedented global demand. To assess whether antibody titers may reasonably predict efficacy and serve as the basis of a CoP, we evaluated the relationship between efficacy and in vitro neutralizing and binding antibodies of 7 vaccines for which sufficient data have been generated. Once calibrated to titers of human convalescent sera reported in each study, a robust correlation was seen between neutralizing titer and efficacy (ρ = 0.79) and binding antibody titer and efficacy (ρ = 0.93), despite geographically diverse study populations subject to different forces of infection and circulating variants, and use of different endpoints, assays, convalescent sera panels and manufacturing platforms. Together with evidence from natural history studies and animal models, these results support the use of post-immunization antibody titers as the basis for establishing a correlate of protection for COVID-19 vaccines.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Animals , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL